
July 23rd, 2025

Move Fast and Don’t Break Things: 
How testing enabled a total rewrite 
of critical infrastructure

Ethan Holz
Research Software Engineer, Ecosystem 
Infrastructure



Agenda

● The gha-runner project

● Why we wanted to re-architect the underlying code

● How tests enabled us to make big changes

● Where we failed

● How can you do this in your own projects



gha-runner Project

● A project to provide simple, ephemeral GitHub Actions Runners 

on multiple compute providers

● Focused on best practices and user experience

● 60% of the time was spent on testing and validation

● Used by at least of 6 public projects (and a few not public 

ones)

● Based on machulav/ec2-github-runner 

https://github.com/machulav/ec2-github-runner


High-level architecture



Interfaces



The idea of how this should work 
(v0.3.0)



The idea of how this should work 
(v0.3.0)



The idea of how this should work 
(v0.3.0)



How this works today



What testing looked like for us

● Well defined mocks for AWS using moto

● Well defined deployment flow

● Convoluted testing for GitHub and input parsing

● Integration tests that could be run on AWS



Moment #1: Let’s Remove PyGithub 



Why?

● Bloated dependency

● The API we need isn’t in the library

● Difficult to mock



How testing looked



How testing looked



How we fixed this problem

1. Replace existing code with a generic requests approach 

side-by-side

2. Write tests that model the functionality of the initial tests 

using the responses library

3. Run tests to ensure that both pass

4. Remove the old tests



How testing looks now



Moment #2: We need more disk!



Moment #2: We need more disk!



The problem

● Parsing new inputs
○ Non-trivial

○ Non-deterministic

● Much of the existing code relied on AWS convention
○ Convoluted for developers to add new cloud providers





A brief interlude on parsing inputs

● We are using Docker to run this CI

● Inputs to Docker GitHub Actions are passed like the following: 

INPUT_<NAME>

● All inputs are passed as strings, even if no value is set 

(creating an empty string)



How the functionality looked



How hard it was to test



How we fixed this problem

● Rethink the needs of input parsing
○ Need to be flexible, repeatable, and easily testable

○ Devs should be confident in their parsing they do

● Take this one step further and remove the need for AWS 
○ The process of provisioning is repeatable, leverage it

○ Make the pieces that are always the same, testable



Start with how we want to parse



Implementation change



Reduce implementation work



Where we failed

● We did not have sufficient separation of concerns to make 

behavior repeatable

● Our integration tests were not kept up to date and did not 

cover the functionality we claimed to support
○ We claim to support arm64 but did not test this between migrations

○ Recently fixed this change



What we achieved

● Split code functionality into common functionality and actions
○ Two GitHub Actions

○ A “standard” library for working with GitHub

○ Remove dependency on PyGitHub to make mocking simpler

● Systematic removal of complexity in testing
○ Does this test our code or does it spend most of its time mocking 

functionality?

● Simpler and more extensible code that is easily tested
○ Testable code is extensible code



Doing this in your own project

● Stick to user-defined norms when you can

● Reduce duplication

● Rely on your testing to do the heavy lifting

● Write the tests based on how your users are using your code

● Limit mocking by extracting the functionality you need
○ Mock infrastructure, not libraries





Questions?



Interested in learning more about cloud?

I am hosting a cloud office hours session tomorrow at 12 PM 

Mountain about cloud compute for comp chem/comp bio researchers 

but will also be suitable for RSEs! This is aimed to be high level 

to get people familiar with cloud compute terminology! Check the 

US-RSE #events channel to register!


