Move Fast and Don’t Break Things:
How testing enabled a total rewrite
of critical infrastructure

Ethan Holz
Research Software Engineer, Ecosystem
Infrastructure

July 23rd, 2025

Agenda

The gha-runner project

Why we wanted to re-architect the underlying code
How tests enabled us to make big changes

Where we failed

How can you do this in your own projects

gha-runner Project

® A project to provide simple, ephemeral GitHub Actions Runners
on multiple compute providers

® F[ocused on best practices and user experience

® 0O% of the time was spent on testing and validation

e Used by at least of 6 public projects (and a few not public
ones)

e Based on machulav/ec2-github-runner

https://github.com/machulav/ec2-github-runner

High-level architecture

GitHub AWS/Oracle/ete.

K

GitHub

AWS/Oracle/ete. GitHub

Job Start

Create Instance

S Install requiced
pacakges

\ Install GitHub

Cleomup Runner from

GitHub Delete Instance

Actions Runner NOTE: This might not be entire|y accurate, GitHub

wight be re_sponsib[e_ for both cleomup.

Interfaces

Required Functions

Required Functions

- Provision Instance(s) \ Containerized Runner "Con‘tro“ef" (A R \
- Wait until instance is re_ao(t./
- Install po\cko\ge,s onto instance (oL R \ _ Re:":,it;::\z:

- Remove instancels) "LHUL Rumnner:

- Spin up mul‘tiple instanes Cloud Interface Interface (Calls the - Set tags

(how we call cloud
APIs)

[M] [1) m

Conﬁg, Interface

. P,

GitHub API to 3312 =
runner Token)

L y,

o J

The idea of how this should

(v0.3.0)

name: Reusable OpenMM GPU Test
on:
push: main

jobs:
openmm-test:
runs-on: ubuntu-latest
defaults:
run:
shell: bash -leo pipefail {0}
needs:
- start-aws-runner
steps:
uses: actions/checkout@vé4
name: Print disk usage
PUn S dE=h"
name: Print Docker details
run: "docker version || true"
name: Check for nvidia-smi
run: "nvidia-smi || true"
uses: mamba-org/setup-micromamba@main
with:
environment-name: openmm
create-args: >—
openmm
condarc: |
channels:
- conda-forge
name: Test for GPU
id: gpu_test
run: python -m openmm.testInstallation

work

The idea of how this should work
(v0.3.0)

start-aws-runner:
runs-on: ubuntu-latest
outputs:
mapping: ${{ steps.aws-start.outputs.mapping }}
instances: ${{ steps.aws-start.outputs.instances }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: ${{ secrets.AWS_ROLE }}
aws-region: us-east-1
- name: Create cloud runner
id: aws-start
uses: omsf-eco-infra/gha-runner@main
with:
provider: "aws"
action: "start"
aws_region_name: us-east-1
aws_image_id: ami-0f7c4a792e3fb63c8
aws_instance_type: ${{ inputs.instance_type }}
aws_home_dir: /home/ubuntu
env:
GH_PAT: ${{ secrets.GH_PAT }}

The idea of how this should work
(v0.3.0)

stop-aws-runner:
runs-on: ubuntu-latest
needs:
- start-aws-runner
- openmm-test
if: ${{ always() }r
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: ${{ secrets.AWS_ROLE }}
aws-region: us-east-1
name: Stop instances
uses: omsf-eco-infra/gha-runner@main
with:
provider: "aws"
action: "stop"
aws_region_name: us-east-1
instance_mapping: ${{ needs.start-aws-runner.outputs.mapping }}
env:
GH_PAT: ${{ secrets.GH_PAT }}

jobs:
start-aws-runner:
runs-on: ubuntu-latest
permissions:
id-token: write
contents: read
outputs:
mapping: ${{ steps.aws-start.outputs.mapping }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@vé4
with:
role-to-assume: ${{ secrets.AWS_ROLE }}
aws-region: us-east-1
name: Create cloud runner
id: aws-start
uses: omsf/start-aws-gha-runner@vl.0.0
with:
aws_image_id: ami-0d5079d9be06933e5
aws_instance_type: g4dn.xlarge
aws_home_dir: /home/ubuntu
env:
GH_PAT: ${{ secrets.GH_PAT }}

How this works today

self-h
runs
need

step:

osted-tes

-on: self-hosted
5}
start-aws-runner

uses: actions/checkout@v4
Print disk usage
df -h"

name: Print Docker details
run: "docker version || true"

name: Setup Conda Environment
uses: mamba-org/setup-micromamba@v2
wit!
environment-file: devtools/conda-envs/test_env.yaml

nam: Install Package and test plugins
run: python -m pip install . utilities/test_plugins/

name: Double-check local installation
run: python -c "from openff.evaluator import __version__
name: Run integration tests
run:
cd integration-tests/default-workflows/
python run.py

print(__version__

stop-aws-runner:
runs-on: ubuntu-latest
permissions:
id-token: write
contents: read
needs:
- start-aws-runner
- self-hosted-test
if: ${{ always() }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@vé4
with:
role-to-assume: ${{ secrets.AWS_ROLE }}
aws-region: us-east-1
name: Stop instances
uses: omsf/stop-aws-gha-runner@vl.0.0
with:
instance_mapping: ${{ needs.start-aws-runner.outputs.mapping }}
env:
GH_PAT: ${{ secrets.GH_PAT }}

What testing looked like for us

Well defined mocks for AWS using moto

Well defined deployment flow

Convoluted testing for GitHub and input parsing
Integration tests that could be run on AWS

Moment #1: Let’s Remove PyGithub

Why
(] README 5 LGPL-3.0 license 5 GPL-3.0 license

e Bloated dependency PyGitHub
‘ T h e A P I We n e e d i S n J t i n t h e 1 i br a ry pypxlvz.s.l. Oa m docs] license LGPL Slack channel | | code helpers [8] codecov Code style| black
. D i f f i C u 1 t to moc k :jtaasl;epositories, user profiles, and organizations in your Python applications.

pip install PyGithub

b REST APL. This library enables you to manage {ub resources

Simple Demo

from github import Github

Authentication is defined via github.Auth

from github i

lic Web Github
Github(auth=auth)

g = Github(base_url="https://{hostname}/api/v3", auth=auth)

Then plz
for repo in g.get_user().get_repos()
print(repo.name)

close conr

g.close()

How testing looked

@pytest.fixture

def github_release_mock():
Create MagicMocks for components not directly patched
mock_release = MagicMock()
mock_asset = MagicMock()
mock_runners = MagicMock()
runner = MagicMock(spec=SelfHostedActionsRunner)
runner2 = MagicMock(spec=SelfHostedActionsRunner)

Setup fixed attributes for mocks

asset_name = "runner-linux-xé4.tar.gz"

asset_url = "https://github.com/testing/runner-linux-x64.tar.gz"
mock_asset.name = asset_name

mock_asset.browser_download_url = asset_url
runner.labels.return_value = [{"name": "runner-linux-x64"}]
runner2.labels.return_value = [{"name": "runner-linux-x64"}]
mock_runners.__iter__.return_value = [runner, runner2]

Using patch as a context manager inside the fixture

with patch("gha_runner.gh.Github") as mock_github:
mock_repo = MagicMock()
mock_github.return_value.get_repo.return_value = mock_repo
mock_repo.get_latest_release.return_value = mock_release
mock_repo.get_self_hosted_runners.return_value = mock_runners
mock_release.get_assets.return_value = [mock_asset]
mock_repo.remove_self_hosted_runner.return_value = True

instance = GitHubInstance("test", "testing/testing")

yield instance, mock_asset, mock_repo

How testing looked

@pytest.mark.parametrize(
"status_code, ok, content, error"
[(200, True, None, None), (4084, False, "Not Found", TokenRetrievalError)],

def test_create_runner_token(post_fixture, status_code, ok, content, error):
instance, mock_response = post_fixture
mock_response.status_code = status_code
mock_response.ok = ok
mock_response.content = content

error_str = f"Error creating runner token: Error in API call for https://api.github.com/repos/testing/testing/actions/runners/registration-token: {mock_response.content}"
if error:

with pytest.raises(error, match=error_str):
instance.create_runner_token()

else:
response = instance.create_runner_token()
assert response — mock_response.json.return_value["token"]
mock_response.json.assert_called_once()

How we fixed this problem

1. Replace existing code with a generic requests approach
side-by-side

2. Write tests that model the functionality of the initial tests
using the responses library

3. Run tests to ensure that both pass

4. Remove the old tests

How testing looks now

@pytest.fixture
def github_instance():
return GitHubInstance(token="fake-token", repo="test/test")

Opytest.fixture
def mock_runner():
return SelfHostedRunner(
id=1, name="test-runner", os="1linux", labels=["test-label"]
)

def test_init(github_instance):
assert github_instance.token = "fake-token"
assert github_instance.repo = "test/test"
assert github_instance.BASE_URL = "https://api.github.com"

def test_headers(github_instance):
headers = github_instance._headers({})
assert headers["Authorization"] = "Bearer fake-token"
assert headers["X-Github-Api-Version"] = "2022-11-28"
assert headers["Accept"] = "application/vnd.github+json"

@responses.activate
def test_create_runner_token(github_instance):
responses.add(
responses.POST,
"https://api.github.com/repos/test/test/actions/runners/registration-token",
json={"token": "test-token"},
status=200,

token = github_instance.create_runner_token()
assert token = "test-token"

Moment #2: We need more disk!

mattwthompson commented on Jan 9 Member) (Author

The default disk allocation isn't enough for this conda environment. | checked with @ethanholz and the runner action
doesn't expose an option for that yet. There might be a release (0.5.0?) in a week or so that includes this among other
changes.

There might also be a way to slim dependencies down, | have not not looked into this yet.

© (& 1

Moment #2: We need more disk!

The problem

e Parsing new inputs
o Non-trivial
o Non-deterministic
® Much of the existing code relied on AWS convention

o Convoluted for developers to add new cloud providers

Required Functions

~

- Provision Instance(s)
- Wait until instance is re_ao(c/
- Install packages onto instance
- Rewmove instance(s)
- Spin up mul‘tiple instanes

Containerized Rumner "Controller”

-

(Cloud Interface

\ J

(.how we Co.“ CIOUA
APIs)

[M] [n] [A]

Conpig Interface

GitHub Runner
Interface (Calls the
GitHub APT to
runner Token

Required Functions

(Ao(o(Runner

- Get token
- Remove Runner
L Se_‘t 'toxgs

brief interlude on parsing inputs

We are using Docker to run this CI

Inputs to Docker GitHub Actions are passed like the following:
INPUT_<NAME>

All inputs are passed as strings, even if no value is set
(creating an empty string)

How the functionality looked

def _env_parse_helper(
params: dict, var: str, key: str, is_json: bool = False
) — dict:
val = os.environ.get(var)
if val is not None and val == "":
if is_json:
params[key] json.loads(val)
else:
params[key] val
return params

parse_aws_params() — dict:
params = {}
ami = os.environ.get("INPUT_AWS_IMAGE_ID")
if ami is not None:
params["image_id"] = ami
instance_type = os.environ.get("INPUT_AWS_INSTANCE_TYPE")
if instance_type is not None:
params["instance_type"] = instance_type
params = _env_parse_helper(params, "INPUT_AWS_SUBNET_ID", "subnet_id")
params = _env_parse_helper(
params, "INPUT_AWS_SECURITY_GROUP_ID", "security_group_id"

params = _env_parse_helper(params, "INPUT_AWS_IAM_ROLE", "iam_role")
params = _env_parse_helper(params, "INPUT_AWS_TAGS", "tags", is_json=True)
region_name = os.environ.get("INPUT_AWS_REGION_NAME")
if region_name is not None:

params["region_name"] = region_name
home_dir = os.environ.get("INPUT_AWS_HOME_DIR")
if home_dir is not None:

params["home_dir"] = home_dir
params = _env_parse_helper(params, "INPUT_EXTRA_GH_LABELS", "labels")
return params

How hard 1t was to test

pytest.mark.paranetrize(
"env_vars,
«r
(
_ID": "ami-1234567890"},
[{"image_id": "ami-1234567890"}],

{"INPUT_AWS_INSTANCE_TYPE": "t2.micro"
{"instan pe”: "t2.micro"}],

{"INPUT_Al
[{"subnet_id": = 567890"}],

{"INPUT_AWS_SECURITY_GROUP_ID": "sg-1234¢
[{"securi oup_id": "sg-1234567890"}],
).
{"INPUT_AWS_IAM_ROLE": "role-1234567890"},
[{"iam_ro "role-1234567890"}]
).
(
{"INPUT_Al '[{"Key": "Name", "Value": "t

TAG:
[{"tags": [{"Key": "Name", "Value": "test"}]}],

).

(C
{"INPUT_AWS_REGION_NAME": "us-east-1"},
[{"region_name": "us-east-1"}],

{"INPUT_AWS_HOME_DIR": "/home/ec2-user"},
[{"home_dir": "/home/ 1

{"INPUT_EXTRA_GH_LABELS": s {"labels": "test"

{"INPUT_AWS_IMAGE_ID": "ami-1234567890"},
[{"image_id": "ami-1234567896"}],

“INPUT_AWS_IMAGE_ID": “ami-1234567890",
"INPUT_AWS_INSTANCE_TYPE": "t2.micro",

“t2.nicro"},

_par ms(env_vars, expected_output
=0
key, value in env_vars.items():
if key = "INPUT_AWS_TAGS
os.environ[key] = value

iron[key] r(value)
= expected_output[idx]
idx
for key in env_vars.keys(
os.environ[key]

How we fixed this problem

® Rethink the needs of input parsing
o Need to be flexible, repeatable, and easily testable
o Devs should be confident in their parsing they do
e Take this one step further and remove the need for AWS

o The process of provisioning is repeatable, leverage it
0 Make the pieces that are always the same, testable

Start with we want to parse

@pytest.mark.parametrize(
"env_vars, expected_output",

3, {3,
¢ {"INPUT_AWS_TMAGE_ID": "ami-1234567890"}, def test_env_bui'Lder‘() 5
’ [{"image_id": "ami-1234567898"}], onvl = {}
E{Ig:l;:!i:ieng"CEE;vEEcroﬁ,mcm}' env [" INPUT_AWS_IMAG E_ID "] = "ami-1234567890"
' env["INPUT_AWS_INSTANCE_TYPE"] = "t2.micro"
N s e env["INPUT_GH_REP0"] = "owner/test"
' env["GITHUB_REPOSITORY"] = "owner/test_other"
I TR R env[" INPUT_INSTANCE_COUNT"] = "1
{"INPUT_AWS_IAM_ROLE": "role-1234567890"}, enyv [! INPUT_AWS_TAGS"] = |{“Key" : "Name" U "Vaer" : IItEStII}I
’ [{"iam_role": "role-1234567890"}1, builder = (
{"INPUT_ANS_TAGS": *[{"Key": "Name", "Value": “test"}1'}, Eanar‘BUi'Lder‘(env)
[{"tags": [{"Key": "Name", "Value": "test"}]}],) Update_state (n INPUT_AWS_IMAGE_ID" , "image_id")

’ {"INPUT_AWS_REGTON_NAME" : "A‘J‘Sieast-l”}, 5 Update_state (" INPUT_AWS_INSTANCE_TYPE " a "inStanCE_type ")

[{"region_name": "Us-east-1

. .update_state("GITHUB_REPOSITORY", "repo")
{"INPUT_AWS_HOME_DIR": "/home/ec2-user"}, 5 Update_s‘ta‘te ("INPUT_GH_REPO" , " repo ")

[{"home_dir": "/home/ec2-user"}],

e .update_state("INPUT_INSTANCE_COUNT", "instance_count", type_hint=int)
Y SR T o R, .update_state("INPUT_AWS_TAGS", "tags", is_json=True)

[{"image_id": "ami-1234567896"}],)

"INPUT_AWS_IMAGE_ID": "ami-1234567890" Config - bUi‘Lder‘-par‘amS
. VTNPUT ANS.INSTATICE TYPEM: "£2.micro”, assert Config[”image_id"] — "ami-1234567890"
P assert config["instance_type"] = "t2.micro"
{"image_id": "ami-1234567896", "instance_type": "t2.micro"}, assert Config["r‘epo"] —_ "owner‘/test"
5, assert config["instance_count"] = 1
e (T T T (TSR assert isinstance(config["instance_count"], int)
i]

idx =

for ke, value in env_vars. itensO): assert config["tags"] = {"Key": "Name", "Value": "test"}

if key = “‘INPUT,)IWS,TAGE“I : 3 s n n 1
., os-environlkey] = vatve assert isinstance(config["tags"], dict)
os.environ[key] = str(value)
t parse_aws_parans() = expected_output[idx]
=1
~ key in env_vars.keys():
del os.environ[key]

Implementation change

def _env_parse_helper(

params: dict, var: str, key: str, is_json: bool = False

) — dict:

val = os.environ.get(var)
if val is not None and val == "":
if is_json:
params[key] = json.loads(val)
else:
params[key] val
return params

parse_aws_params() — dict:
params = {}
ami = os.environ.get("INPUT_AWS_IMAGE_ID")
if ami is not None:
params["image_id"] = ami
instance_type = os.environ.get("INPUT_AWS_INSTANCE_TYPE")
if instance_type is not None:
params["instance_type"] = instance_type
params = _env_parse_helper(params, "INPUT_AWS_SUBNET_ID", "subnet_id")
params = _env_parse_helper(
params, "INPUT_AWS_SECURITY_GROUP_ID", "security_group_id"
)

params = _env_parse_helper(params, "INPUT_AWS_IAM_ROLE", "iam_role")
params = _env_parse_helper(params, "INPUT_AWS_TAGS", "tags", is_json=True)
region_name = os.environ.get("INPUT_AWS_REGION_NAME")
if region_name is not None:

params["region_name"] = region_name
home_dir = os.environ.get("INPUT_AWS_HOME_DIR")
if home_dir is not None:

params["home_dir"] = home_dir
params = _env_parse_helper(params, "INPUT_EXTRA_GH_LABELS", "labels")
return params

_parse_single_param(self, config: ParamConfig):
"""Parse a single parameter from the environment variables.
value = self.env.get(config.env_var)
if value is not None and (config.allow_empty or value.strip()):
parsed_value = self._parse_value(
value, config.is_json, config.type_val

self._update_params(config.key, parsed_value)

_update_params(self, key: str, value: Any):
self._params = deepcopy(self._params)
self._params[key] = deepcopy(value)

update_state(

self,

var_name: str,

key: str,

is_json: bool = False,
allow_empty: bool = False,
type_hint: Type = str,

) — "EnvVarBuilder":

"""Update the state of the builder with a single parameter.
Returns

EnvVarBuilder
Returns self for method chaining

Raises

ValueError
If any configured environment variable parsing fails

- Empty strings are ignored by default unless allow_empty is True
- JSON parsing is performed before type conversion if is_json is True

config = ParamConfig(var_name, key, is_json, allow_empty, type_hint)

self._parse_single_param(config)
return self

@property
def params(self) — dict:

"""Returns a copyt of the dictionary of parsed parameters.
return deepcopy(self._params)

Reduce implementation work

builder = (
EnvVarBuilder(env)
.update_state("INPUT_AWS_IMAGE_ID", "image_id")
.update_state("INPUT_AWS_INSTANCE_TYPE", "instance_type")
.update_state("INPUT_AWS_SUBNET_ID", "subnet_id")
.update_state("INPUT_AWS_SECURITY_GROUP_ID", "security_group_id")
.update_state("INPUT_AWS_IAM_ROLE", "iam_role")
.update_state("INPUT_AWS_TAGS", "tags", is_json=True)
.update_state("INPUT_EXTRA_GH_LABELS", "labels")
.update_state("INPUT_AWS_HOME_DIR", "home_dir")
.update_state("INPUT_INSTANCE_COUNT", "instance_count", type_hint=int)
.update_state(

"INPUT_AWS_ROOT_DEVICE_SIZE", "root_device_size", type_hint=int

)

.update_state("INPUT_ARCHITECTURE", "arch")

This is the default case
.update_state("AWS_REGION", "region_name")

This is the input case
.update_state("INPUT_AWS_REGION_NAME", "region_name")
This is the default case
.update_state("GITHUB_REPOSITORY", "repo")

This is the input case
.update_state("INPUT_GH_REPO", "repo")

def _modify_root_disk_size(self, client, params: dict) — dict:

" Modify the root disk size of the instance.
Parameters

client
The EC2 client object.
params : dict
The parameters for the instance.

Returns

modified parameters

botocore.exceptions.ClientError
If the user does not have permissions to describe images.
try:
client.describe_images(ImageIds=[self.image_id], DryRun=True)
except ClientError as e:
This is the case where we DO have access
if "DryRunOperation" in str(e):
image_options = client.describe_images(ImageIds=[self.image_id])
root_device_name = image_options["Images"][B]["RootDeviceName"]
block_devices = deepcopy(image_options["Images"]1[0]["BlockDeviceMappings"])
for idx, block_device in enumerate(block_devices):
if block_device["DeviceName"] = root_device_name:
if self.root_device_size > 0:
block_devices[idx]["Ebs"]["VolumeSize"] = self.root_device_size
params["BlockDeviceMappings"] = block_devices
CETS
eillse:
raise e
return params

Where we failed

® We did not have sufficient separation of concerns to make
behavior repeatable

® QOur integration tests were not kept up to date and did not
cover the functionality we claimed to support

o We claim to support arm64 but did not test this between migrations
o Recently fixed this change

What we achieved

® Split code functionality into common functionality and actions
o Two GitHub Actions
o A “standard” library for working with GitHub
o Remove dependency on PyGitHub to make mocking simpler
® JSystematic removal of complexity in testing
0 Does this test our code or does it spend most of its time mocking
functionality?
e Simpler and more extensible code that is easily tested

o0 Testable code is extensible code

Doing this 1n your own project

Stick to user-defined norms when you can

Reduce duplication

Rely on your testing to do the heavy lifting

Write the tests based on how your users are using your code

Limit mocking by extracting the functionality you need

0 Mock infrastructure, not libraries

start-aws-runner:
runs-on: ubuntu-latest jobs:

start-aws-runner:

outputs:
mapping: ${{ steps.aws-start.outputs.mapping }}
instances: ${{ steps.aws-start.outputs.instances }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: ${{ secrets.AWS_ROLE }}
aws-region: us-east-1
- name: Create cloud runner
id: aws-start
uses: omsf-eco-infra/gha-runner@main
with:
provider: "aws"
action: "start"
aws_region_name: us-east-1
aws_image_id: ami-0f7c4a792e3fb63c8
aws_instance_type: ${{ inputs.instance_type }}
aws_home_dir: /home/ubuntu
env:
GH_PAT: ${{ secrets.GH_PAT }}

runs-on: ubuntu-latest
permissions:
id-token: write
contents: read
outputs:
mapping: ${{ steps.aws-start.outputs.mapping }}
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: ${{ secrets.AWS_ROLE }}
aws-region: us-east-1
- name: Create cloud runner
id: aws-start
uses: omsf/start-aws-gha-runner@vl.0.0
with:
aws_image_id: ami-0d5079d9beB6933e5
aws_instance_type: g4dn.xlarge
aws_home_dir: /home/ubuntu
env:
GH_PAT: ${{ secrets.GH_PAT }}

Questions?

Interested 1n learning more about cloud?

I am hosting a cloud office hours session tomorrow at 12 PM
Mountain about cloud compute for comp chem/comp bio researchers
but will also be suitable for RSEs! This is aimed to be high level
to get people familiar with cloud compute terminology! Check the

US-RSE #events channel to register!

